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Multiple parallel representations in spatial memory.

Effects of consistency with ‘Visual Snapshots’ & Internal ‘Spatial Updating’
Wang & Simons 1999
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Multiple parallel representations

In spatial memory.
Visual Snapshots (egocentric),

Spatial Updating (egocentric) and

External Cues (allocentric).

Burgess, Spiers, Paleologou, 2004
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The hippocampus supports memory (e.g. HM), but how does it work?

Spatial studies in
rodents => likely neural
representations.

To spike discriminator

To Mouse tracker

Place cells- ‘allocentric’ location

O’Keefe & Dostrovsky, 1971 Video by Julija Krupic



Place cells show long term memory and pattern completion

Place cell “remapping:” long-term memory for
highly distinct environments.
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Lever, Wills, Cacucci, Burgess, O’Keefe, 2002

Place cell representation
shows attractor dynamics
Wills, Lever, Cacucci, Burgess, O’Keefe, 2005

and ‘pattern completion’
depending on CA3 NMDA receptors
Nakazawa et al., 2002




Environmental boundaries particularly influence place cell firing

122cm

O’Keefe & Burgess (1996)



Place Cell firing as a thresholded sum of “Boundary Vector Cell” inputs

Boundary Vector Cells (BVCs)
signal distance to boundary
along an allocentric direction

Firing Receptive
rate field

environmental boundary

O’Keefe & Burgess, 1996; Hartley et al 2000



BVCs found in subiculum & entorhinal cortex

Including those firing at a
distance
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Lever, Burton, Jeewajee, O’Keefe, Burgess, 2009
See also Barry et al, 2006; Solstad et al, 2008




Object Vector Cells

Unit 1 | Unit 2 Desmukh & Knierim, 2013

and medial entorhinal cortex

Hoydal..Moser 2019

10.6 Hz
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Hemispatial neglect in //;(

memory of Milan
square following right
parietal damage.

= formation of an ;,__

egocentric :

representation in parietal i p———n i

cortex from a stored : i

allocentric representation  =ssrs, - g eene 3 |
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Bisiach & Luzzatti(1978)



Several identified neural representations support spatial cognition

Hippocampal formation
(allocentric)
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Head Direction (degrees)
Ranck et al, 1984;
Taube et al, 1990

O’Keefe & Dostrovsky, 1971

boundary cells

-

Lever et al, 2009
Solstad et al, 2008

Hafting et al., 2005

Sensory, Parietal, Motor cortices
(egocentric)

trajectory cells,

retinal receptive fields

400

fixation

Nitz 2009


RatMoviePC.avi
RatMoviePC.avi
RatMovieHD.avi
RatMovieHD.avi
RatMovieGC.avi
RatMovieGC.avi

Frames of reference for neural coding

‘egocentric’ allocentric’

Body-centred location of objects World-centred location of agent

Perception Place cells
Action/Imagery Head-direction cells

Burgess et al 2001



‘Gain field’ responses in posterior parietal cortex
i.e. conjunctive responses to (retinotopic) visual input x gaze direction

retinotopic response

40° All stim. retinal (20,-20)
fixation |
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Andersen et al 1985

or by direction of the head (Snyder et al 1998).
Similar responses seen in parieto-occipital ctx (Galletti et al., 1995)



Gain field neurons can produce ‘head-centred’ or
retinotopic representations.

Head-Centered Retinotopic

retinal position of stimulus =r, (stimulus straight ahead)
stimulus straight ahea

eye gaze angle=e,

- o =20
* L’x:{'
iy c'x=2“

Activity

—40 =20 0 20 40

Pouget & Sejnowski, 1997



Model of memory & imagery for scenes

Egocentric-allocentric translation by ‘gain-field’ neurons
(i.e. conjunctive representations of egocentric sensory input x head direction)
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Scene representation by populations of egocentric or allocentric BVCs
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Scene representation by populations of egocentric or allocentric BVCs
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Ego-aIIo scene ‘gain field’ representation of
translation scene elements x head direction

(retrospenial cortex?)
‘ Transformation
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: \ BVC N
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Byrne, Becker, Burgess 2007
Burgess et al., 2001
see also Pouget & Sejnowski 1997



Ego-aIIo scene ‘gain field’ representation of
translation scene elements x head direction

(retrospenial cortex?)
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Model of memory & imagery for scenes

‘bottom-up’ encoding/ perception

Medial Temporal network

imagery (] i
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In a familiar environment, MTL connections generate a coherent scene
consistent with a single viewpoint (place cells) and direction (HDCs)

Bicanski & Burgess, 2018; Byrne, Becker, Burgess 2007; Burgess Becker et al, 2001
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1.0

egocentric
agent view

Perceptually driven MTL (bottom-up mode)
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1.0 Perceptually driven MTL (bottom-up mode)
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1.0 Imagery (top-down mode) - "Where did | leave my keys?" time
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Model allows interpretation of fMRI patterns during recollection/ imagery

Precuneus
Mental
Imagery

Head
direction
cells

PFC
Top down
processing

Ego-Allo
Transform

In a familiar environment, MTL connections ensure generation of a coherent scene,
consistent with a single viewpoint (place cells) and direction (HDCs)

RSC supports egocentric-allocentric translation, required to associate (allocentric)
internal representations with (egocentric) sensory representations
(Egocentric BVCs and OVCs have now been found, Hasselmo & Derdikman labs)



Model allows interpretation of fMRI patterns during recollection/ imagery

posterior
parietal
cortex

& prediction of human search patterns

parahippo.

precuneus

POS/ RSC

Burgess et al, 2001
Hartley et al, 2004

The network performs coherent spatial imagery, i.e. related to planning,

‘episodic future thinking’ and ‘scene construction’ Addis and Schacter, 2007;
Hassabis and Maguire, 2007
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POS/ RSC activity and change of viewpoint in memory
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Lambrey et al 2013

RSC associates internal (allocentric) representations to (egocentric) sensory inputs
- strong associations form to stable sensory features (e.g. Auger et al., 2012)



Relation to pattern completion and models of Episodic Memory

Pattern completion is seen in reconstruction H Q Q %
ofIoc?atlon-oIFJJect-lde’ntlty in scene. O XX O 5
Consistent with Marr’s model of
hippocampus & Tulving’s idea of holistic / \
episodic recollection/ re-experience.
Consistent with measures of pattern .00
0 0

completion in Episodic memory P OOOO OOOOOO
see Horner et al (2015). \ t “\ ® O 1

eocortex: .%rsﬁ

OO OOO OOOOO

Marr, 1971; Gardner-Medwin, McNaughton,
Alvarez, Squire, McClelland, O’Reilly, Treves,
Rolls, Teyler & DiScenna; Damasio;



Functional roles for Papez’s circuit?

Hippocampus (place cells):

imposing a common viewpoint on 5 N—
retrieval/ imagery. \ >
. X Papez s urcurt ,,,,,,,,,,,,

Fornix: \ ——

Head-direction cells: imposing a L

viewing direction " Cine <

Theta cells/VCOs: grid cells, path -

integration, moving viewpoint in 4

imagery. ._
Anterlor

ACh/novelty/learning )
Thal‘amus T

Diencephalic amnesia

(Aggleton & Brown, 1999; Gaffan;
Delay & Brion 1969). E.g.,

patient NA (Squire & Slater,
1978),Korsakoff’'s syndrome.
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Grid cells — thought to represent location by integrating self-motion.

The grids of nearby cells share Grid cells occur in modules with discrete scales
orientation & scale Anterior Posterior
[ @
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Barry et al, 2007;
see also Stensola et al., 2012

Hafting et al., 2005

Video by Julija Krupic



Two ways to know where you are:

1. Environmental information

(Environmental boundaries particularly influence place cells)

outward path
A

2. Path integration

return path

Grid cells
o' ~.”. L ) . .\.s. ."
K LI - I

: S8 g 4§
.....‘ \\

s

Hafting et al., 2005

Video by Julija Krupic



Two ways to know where you are:

1. Environmental information

(Environmental boundaries particularly influence place cells)

outward path
A

2. Path integration

return path

Grid cells

Hafting et al., 2005
Video by Julija Krupic



Interactions between place cells and grid cells

Estimating self-location combines environmental & self-motion information

Environmental information
(< Boundary Vector Cells)

Self- motion

BVCs

GC
e

Place field !

Ay

Grid

Burgess et al, 2007



2D VR for mice (invisible reward task)

Guifen Chen, John King, Yi Lu, Francesca Cacucci, Neil Burgess, elife 2018



2d VR allows expression
of normal place, grid &
head-direction firing
patterns, controlled by
virtual cues (e.g. 180°
rotation of VR and
entry point)

Chen et al, eLife 2018
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Grid cell firing patterns reflect self-motion more than vision

cell 1 cell 2 cell 3 cell 4 cell 5 cell 6
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Guifen Chen, Yi Lu, John King, Francesca Cacucci, Neil Burgess, Nat Comms, 2019



Place cell firing patterns reflect vision more than self-motion

cell 1 cell2  cell3 cell 4 cell5 cell6 120
0.81 1.67 3.41 4 1.21
o -
real 100!
world
X 80 |
0.69 12.06
187 60 |
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20}
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Guifen Chen, Yi Lu, John King, Francesca Cacucci, Neil Burgess, Nat Comms, 2019 GCs PCs
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Interactions between place cells and grid cells

Estimating self-location combines environmental & self-motion information.

BVCs
Environmental information J
(< Boundary Vector Cells) PC
Place field
|
|
|
; GC |
Self- motion Gra -
>

Burgess et al, 2007
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Grid cells and memory/imagery

PWb

egocentric frame

PWo

Updating of
viewpoint in
(imagery)
perception

*k Agent model
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Identity T
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Grid cells

Allocentric updating of (imagined) location

Bicanski & Burgess, elife, 2018




Grid cells in the human autobiographical memory system? Doeller, Barry, Burgess, 2010

populations of aligned grids (modules) => changes in fMRI signal with virtual running direction

aligned runs misaligned runs

EEEEEEEEEER
Pl Teta el Tl e

@ O+60 ®+120 running direction

Task designed by John King

Autobiographical
memory system

=> Grid cells allow path integration, and movement of viewpoint in imagery?



Grid-like processing of movement of viewpoint in imagery

7.6secs 10.0secs 3.5secs 6.3secs 3.5secs

Cue Imagination Wait Object Placement Feedback

8 '0.8'
o g -0.6 -
£S5 -0.4-
T ®©
va',? 0.:-
. . cL - . . . . = T
60° symmetry in fMRI signal with imagined running direction g .
2o
in Entorhinal cortex (aligned with that in virtual movement) 28 047
& .06

3-fold 4-fold 5-fold | 6-fold | 7-fold 8-fold

1.0 4

% signal change difference
Imagiantion > Stationary

3-fold 4-fold 5-fold | 6-fold | 7-fold 8-fold

Horner et al., 2016
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Hippocampal cells can represent abstract concepts, such as
‘place’ but also, e.g., personal identity or sound frequency?
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press release

Grid cell firing patterns reflect the transition structure of learned

conceptual spaces?

. fMRI: :
Navigation in space of Constantinescu,

bird neck & leg length O’Reilly, Behrens
direction/30° 2016
PPC




Interactions between place cells and grid cells

Representing bodies of conceptual knowledge (states) and transitions between them?

BVCs
State information (place) J
(<> Feature Vector Cells?) PC
Place field .
|
{
/ I
. GC
Transition structure _ !
(self- motion) | /Ty Grd



‘Intuitive Planning..’

States

151413121110 9 8 7 6 5 4 3 2 1

X(t)

states X;

12345678 9101112131415

P(state occupancy)

Transition matrix (T)

"u

probability of

step

1234 567

probability of
transition from state 2

. . to state 3 in one step

transition from state
11 to state 8 in one

8 9 10111213 14 15

States

I P(x(t)) is a vector over states X;

1R

P(x(t+1))=T_P(x(1))

nlln

P(x(t+2))=T 2 P(x(1))

1234

11 P(x(t+3))=T * P(x(1))

states X;

..with neural populations

. X(t
P(x(t)) is a vector over states x;: ( )r' 3

PC, firing profile is F;
firing rate is f;(x(t))

P(x(1)) ~ 2; fi(x(1) F;
P(x(t+1)) ~ 2 fi(x()TF;

GC, firing profile = G,
firing rate = g;(x(t))
P(x(1) ~ 2 g;(x())G,
P(x(t+1)) ~ Z; g;(x())TG;
If TG;(x) = 4,G;(X)
P(x(t+1)) ~ Z; 4g;(x(D)G;
P(x(z =t)=x;)
~2; (YA Hy2A4+. ) g, (X ()G,
~%,gXO)/(1v%) G,

Stachenfeld, Botvinick,

Gershman, Gerstner, Baram..
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Place cell read-out of GCs

P(x(t)) is a vector over states x;:

S160) tven oy GCs2 rmgre o) et
I £ (x(®) ~ 2 w;; g;(x(1) P(X(®) ~ Z; fix(V) F; -
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then f; (x(t)) ~ P(x(t) = x;) N | e

If £, (<(0) ~ Zj4w; G X(1) o n;:';g ier('le(t» . AA /
then f; (x(t)) ~ P(x(t+1) = x;) P(x(t)) ~ Z; g;(x())G; 0000800000000

r j -]
If £ (x(V) ~ Z; w9, (x(©)/(1-v4) P(x(t+1)) ~ Z; g;(x())TG; \/V\

| L e L e
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P(x(t+1)) ~ 2 49;(x(1)G; / \—/\
P(x(t 21)) P(x(t >t)=x;) NN
ST A NGO)G
~2j gj (X (t)) / ( 1 -y ) i) Qj [ 12 S etetealotetareret ¥ 7 )

states x;

OO OO0

Baram.. Behrens (bioRxiv) _—




So.. If you want a set of basis vectors to represent where you are in state space,
choosing Eigenvectors of the task Transition Matrix makes planning easy.

And.. Grid firing profiles might be Eigenvectors of a diffusive transition matrix T
(i.e. TG;(x) =A,G;(x)), or of the covariance matrix of PC firing (e.g. learned via Oja’s rule)

f SR eigenvector grid fields
Square Trapezoid Hexagon

: el (Stachenfeld et al., 2017)
1 ~ ; e e “
; ecCco 0
4 . E o0 % 0
.
H E E ﬂ B (Dordek e al., 201

Implications

* Place cell read-out shifts from current location to future locations by re-weighting
GC inputs, can give Successor Representation (SR)

* Gradient ascent on SR allows navigation to any other state

* Local changes to Transitions require re-learning of eigenvectors (GCs): via replay?

 Common transition structure across tasks captured by GCs, while PCs ‘remap’ to
specific stimuli, allows generalisation to new tasks (aka ‘schemas’ &
‘consolidation’ of statistical structure), see ‘T.E.M." (Whittington et al BioRxiv, 2019)



Conclusions

* Considerable progress has been made in understanding how
environmental and self-motion information combine in neural
representations of location and orientation in rodents.

* We can use this to create a neural-level understanding of spatial
memory, learning and imagination in humans, and begin to apply it to
conceptual knowledge?

Caswell Barry

Thank-s l_h?" _ Dan Bush
Andrej .B icanski Christian Doeller
J oh.n King Aidan Horner
G_“’f en Chen Colin Lever

Yilu Hugo Spiers

John O’Keefe
Francesca Cacucci
Lone Hgrlyck
James Bisby

Tim Behrens

Suzanna Becker
Tom Hartley
Chris Brewin

Medical

Research

MRC Council



